First Order Differential Equations Anton 7.7

First Order Differential Equations:
Equations where the highest derivative is $\mathrm{dy} / \mathrm{dx}$

1. Separable: $\quad \frac{d y}{d x}=x y \quad y(0)=-2$

$$
\begin{gathered}
\frac{1}{y} d y=x d x \\
\ln |y|=\frac{1}{2} x^{2}+C \\
y=C e^{\frac{1}{2} x^{2}}
\end{gathered}
$$

$$
\begin{gathered}
-2=c e^{0} \Rightarrow c=-2 \\
y=-2 e^{x^{2} / 2}
\end{gathered}
$$

2. First Order Linear

Takes the form: $\frac{d y}{d x}+p(x) y=q(x)$
Examples:

$$
\begin{array}{lll}
\frac{d y}{d x}+x^{2} y=e^{x} & p(x)=x^{2} & q(x)=e^{x} \\
y^{\prime}+y \sin x+x^{3}=0 & p(x)=\sin x & q(x)=-x^{3} \\
y^{\prime}=-5 y+2 & p(x)=5 & q(x)=2
\end{array}
$$

Procedure for Solving First Order Linear Diff EQ:

1. Find the integrating factor: $\mu=e^{\int p(x) d x} \quad \mu^{\prime}=e^{s_{p}(x) d x} \cdot p(x)$
2. Multiply both sides of the diff eq. by μ : $\quad \mu^{\prime}=\mu p(x)$

$$
\begin{aligned}
& y^{\prime}+p(x)=q(x) \\
& \mu y^{+}+\mu(x) y=\mu q(x) \\
& \mu y^{\prime}+\mu y=\mu q(x)
\end{aligned}
$$

3. Rewrite as: $\frac{d}{d x}(\mu \mathrm{y})=\mu \mathrm{q}(\mathrm{x})$
4. Integrate both sides and solve for y

Example: $\frac{d y}{d x}-4 x y=x$

$$
\begin{gathered}
\mu=e^{S-4 x d x}=e^{-2 x^{2}} \\
\frac{d}{d x}(\mu y)=\mu q(x) \\
\int \frac{d}{d x}\left(e^{-2 x^{2}} \cdot y\right)=\int e^{-2 x^{2}} \cdot \not x \quad \begin{array}{l}
u=-2 x^{2} \\
d u=-4 x
\end{array} \\
e^{-2 x^{2}} \cdot y=-\frac{1}{4} \int e^{u} d u
\end{gathered}
$$

$$
\begin{gathered}
e^{-2 x^{2}} y=-\frac{1}{4} e^{-2 x^{2}}+C \\
y=-\frac{1}{4}+\frac{C}{e^{-2 x^{2}}}
\end{gathered}
$$

$$
y=-\frac{1}{4}+c e^{2 x^{2}}
$$

Example: $\quad x y^{\prime}-y=x \quad y(1)=3 \quad(x>0)$

$$
\begin{gathered}
y^{\prime}-\frac{1}{x} y=1 \\
\mu=e^{\int-1 / x d x}=e^{+\ln x^{-1}}=1 x \\
\frac{d}{d x}(\mu y)=\mu q(x) \\
\int \frac{d}{d x}\left(\frac{1}{x} \cdot y\right)=\int \frac{1}{x} \cdot 1
\end{gathered}
$$

$$
\begin{gathered}
\frac{1}{x} y=\ln x+c \\
y=x \ln x+x c \\
3=1 \ln (1)+1(c) \\
3=c \\
y=x \ln x+3 x \\
y=x(\ln x+3)
\end{gathered}
$$

Classwork:

Anton 7.7 \# 10, 16

Homework:
Anton 7.7 \# 1-21 odd

